Revisiting the determination of hydromechanical stresses encountered by microcarriers in stem cell culture bioreactors
نویسندگان
چکیده
Background Expansion of mesenchymal stem cells (MSC) is one of the key steps for their use in tissue engineering or cell therapies. Today, expansion processes are mainly based on the use of microcarriers to allow large interfacial adherence areas [1]. However, this culture technology is known to be practically limited to low agitation intensity and microcarrier concentrations due to possible cell damage arising from particle hydromechanical stress or collisions between microcarriers [2]. Unfortunately, the description of the relationship between bioreactor hydrodynamics, microcarrier suspension and occurrence of collisions was neither clearly established in the case of stem cell cultures, nor based on a local description of the bioreactor hydrodynamics heterogeneity. Thus, in the present study, it is proposed to use numerical simulations to describe not only the liquid phase but also the microcarrier dispersion and the occurrence of hydromechanical stress encountered by the microcarriers. Two kinds of hydromechanical stress can be distinguished: (i) fluid-solid interactions (fluid shear stress) arising from turbulent eddies and (ii) solid-solid interactions arising from collisions between microcarriers or between microcarriers and bioreactor walls [2].
منابع مشابه
Three-dimensional culture systems for the expansion of pluripotent embryonic stem cells
Mouse embryonic stem cell (ESC) lines, and more recently human ESC lines, have become valuable tools for studying early mammalian development. Increasing interest in ESCs and their differentiated progeny in drug discovery and as potential therapeutic agents has highlighted the fact that current two-dimensional (2D) static culturing techniques are inadequate for large-scale production. The cultu...
متن کاملMedia and microcarrier surface must be optimized when transitioning mesenchymal stem/stromal cell expansion to stirred tank bioreactors
Background The long-term outlook for regenerative medicine predicts an increased need for high quality materials that are compatible with the limited number of downstream processing steps required for cell-based therapies. Large scale manufacturing of adherent-dependent cell types necessitates movement away from planar culture and toward technologies such as stirred tank bioreactors where suspe...
متن کاملSystematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors
Production of human mesenchymal stem cells for allogeneic cell therapies requires scalable, cost-effective manufacturing processes. Microcarriers enable the culture of anchorage-dependent cells in stirred-tank bioreactors. However, no robust, transferable methodology for microcarrier selection exists, with studies providing little or no reason explaining why a microcarrier was employed. We syst...
متن کاملBovine myoblast cell production in a microcarriers-based system
For several tissue engineering applications, in particular food products, scaling up culture of mammalian cells is a necessary task. The prevailing method for large scale cell culture is the stirred tank bioreactor where anchor dependent cells are grown on microcarriers suspended in medium. We use a spinner flask system with cells grown on microcarriers to optimize the growth of bovine myoblast...
متن کاملParticle Dynamics in a Rotating Wall Vessel Bioreactor
Rotating bioreactors such as the High Aspect Ratio Vessel (HARV) provide a low shear and gentle mixing environment, ideal for mammalian cell culture in 3D. The HARV is a cylindrical “disc-shaped” batch culture vessel with no internal moving parts, that rotates about a single axis. Oxygenation is provided by a permeable silicon rubber membrane, allowing the diffusion of gases to and from the med...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015